Neuropeptide processing and its impact on melanocortin pathways.

نویسندگان

  • Lynn E Pritchard
  • Anne White
چکیده

Proopiomelanocortin (POMC) is processed in an intracellular secretory pathway, primarily to enable release of ACTH from the pituitary and alpha-MSH from hypothalamic neurons and skin. However, processing is incomplete and unprocessed POMC is secreted from all three tissues. This review considers intracellular processing of neuronal POMC as a key checkpoint that controls flux through hypothalamic melanocortin receptor pathways. Regulation of the convertase, proprotein convertase (PC)-1/3, which cleaves POMC is likely to determine the extent of POMC processing. Reduced PC1/3 activity, in both humans and rodents, leads to reduced melanocortin signaling and hence obesity. In contrast to POMC, posttranslational processing of proagouti-related peptide, an endogenous melanocortin-4 receptor antagonist, is efficient and is unlikely to represent a regulatory checkpoint. Because POMC is fully processed to ACTH and MSH peptides in secretory vesicles, unprocessed POMC, which is released from cells, must exit via an unregulated constitutive pathway. Therefore, the targeting of POMC to secretory granules controls the extent of POMC cleavage. There is evidence that PC1/3 is involved in cleavage of POMC in the trans-Golgi network and regulation of trafficking to the secretory pathway, in which it subsequently cleaves POMC to the melanocortin peptides. This would suggest that alpha-MSH and beta-MSH may be subject to alternative sorting mechanisms, leading to heterogeneity in secretory granule content in POMC-producing cells. Overall, these studies implicate POMC processing as a key regulatory mechanism in the control of energy homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of human wharton’s jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes

Objective(s): Type 1 diabetes (T1D) is an autoimmune disease resulting from inflammatory destruction of islets β-cells. Nowadays, progress in cell therapy, especially mesenchymal stem cells (MSCs) proposes numerous potential remedies for T1D. We aimed to investigate the combination therapeutic effect of these cells with insulin and metformin on neuropeptide Y, melanoco...

متن کامل

Impact of interrupted leptin pathways on ventilatory control.

Leptin deficiency in ob/ob mice produces marked depression of the hypercapnic ventilatory response, particularly during sleep. We now extend our previous findings to determine whether 1) leptin deficiency affects the hypoxic ventilatory response and 2) blockade of the downstream excitatory actions of leptin on melanocortin 4 receptors or inhibitory actions on neuropeptide Y (NPY) pathways has a...

متن کامل

Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood

Background Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulatio...

متن کامل

Central melanocortins and the regulation of weight during acute and chronic disease.

Recent advances in our understanding of the regulation of body weight, appetite, and metabolic rate have highlighted the role of the adipose-derived hormone leptin and its receptor as fundamental modulators of these processes. Investigations of the neural targets for leptin action--as well as characterization of the agouti obesity syndrome--have, in turn, led to the discovery of fundamental neu...

متن کامل

NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways.

Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 148 9  شماره 

صفحات  -

تاریخ انتشار 2007